Raytheon BBN Technologies

SpaDE
Space Debris Elimination

Daniel Gregory Raytheon BBN Technologies dgregory@bbn.com

NIAC Symposium 2012

Daniel Gregory
Raytheon BBN Technologies
dgregory@bbn.com

Dr Aaron Ridley
University of Michigan
ridley@umich.edu

Agenda

The Space Debris Problem

- The amount of space debris is rising rapidly, jeopardizing the safety of our satellites and space craft
- Space debris removal is one of the space operations main objectives
- No viable solutions have been created

SpaDE

 Concept to accelerate atmospheric drag effect on targeted debris fields.

- Advantages
 - Launch altitude
 - Economical to transport mass to altitude
 - Above 99% of atmosphere
 - Interception Altitude
 - Can affect multiple objects simultaneously
 - Not lofting more potential debris
 - All air falls back into the atmosphere
- Modalities
 - Explosive
 - Air Cannons

Key Research Questions

• Viable:

Do the fundamental dynamics in the upper atmosphere support the SpaDE approach?

• Economical:

What is the most cost-effective modality that produces the desired effect?

- Effective:
 - How does the perturbation affect the dynamics of the debris?
- Useful:
 - What is the extent of the SpaDE effect?

NIAC Study

- Assessing the viability of the SpaDE concept.
- Modeling upper atmosphere affects relevant to the operation of SpaDE
 - Extending Global Ionosphere Thermosphere Model (GITM)
- Analyzing the effects and impacts of the perturbations on space debris

The Global Ionosphere-Thermosphere Model

GITM solves for:

- ✓ 6 Neutral & 5 Ion Species
- ✓ Neutral winds
- ✓ Ion and Electron Velocities
- Neutral, Ion and Electron Temperatures

GITM Features:

- Solves in Altitude coordinates
- Can have non-hydrostatic solution
 - Coriolis
 - ✓ Vertical Ion Drag
 - ✓ Non-constant Gravity
 - Massive heating in auroral zone
 - ✓ Significant energy perturbations
- Runs in 1D and 3D
 - ✓ 3D Global
 - ✓ 3D Regional (for NIAC work)
- Vertical winds for each major species with friction coefficients
- Non-steady state explicit chemistry
- ✓ Flexible grid resolution fully parallel
- ✓ Variety of high-latitude and Solar EUV drivers
- ✓ Fly satellites through model

Status

Current

- GITM Model Updates
 - Created "box model" to allow the model to run in a localized region
 - Used perturbations in the model to simulate explosive reactions
 - Can create perturbations in temperature, density and winds
 - Added dynamic perturbations
 - Perturbations can happen over any amount of time
 - Reduced the lower bound of the model from 100km to 80km.
- Initial perturbation runs
 - Shows that atmosphere does affect LOE
 - In the process of assessing the results

<1m travel time

Over 20% rho difference at 450 km

Unrealistic wave reflection can be mitigated with higher boundaries

Intermediate Conclusion

Preliminary analyses indicate that SpaDE is a viable solution in LOE debris removal

Further Studies

- Further analyses will address:
 - Further reduce lower bound to 30km
 - Difficult because Ozone absorption of solar energy is main energy source, which GITM doesn't consider. Working on a solution.
 - Add more realistic energy pulse to model simulations
 - Simulation Runs
 - Calculate the effects of pulse on the debris
 - Vary the perturbation of velocity, temperature, and pressure to determine the effectiveness of the solution
 - Determine the differences between energy pulses vs perturbations
- Additional Studies will address the key research topics focusing on economical, effective, and useful aspects of SpaDE

Daniel Gregory Raytheon BBN Technologies dgregory@bbn.com Dr Aaron Ridley University of Michigan ridley@umich.edu

QUESTIONS?

